Quantum Nearest-Neighbor Algorithms for Machine Learning
نویسندگان
چکیده
We present several quantum algorithms for performing nearest-neighbor learning. At the core of our algorithms are fast and coherent quantum methods for computing distance metrics such as the inner product and Euclidean distance. We prove upper bounds on the number of queries to the input data required to compute these metrics. In the worst case, our quantum algorithms lead to polynomial reductions in query complexity relative to the corresponding classical algorithm. In certain cases, we show exponential or even super-exponential reductions over the classical analog. We study the performance of our quantum nearest-neighbor algorithms on several real-world binary classification tasks and find that the classification accuracy is competitive with classical methods.
منابع مشابه
A Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization
Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...
متن کاملSingle-image super-resolution via local learning
Nearest neighbor-based algorithms are popular in example-based super-resolution from a single image. The core idea behind such algorithms is that similar images are close in the sense of distance measurement. However, it is well known in the field of machine learning and statistical learning theory that the generalization of the nearest neighbor-based estimation is poor, when complex or high di...
متن کاملImproved Nearest Neighbor Methods For Text Classification
We present new nearest neighbor methods for text classification and an evaluation of these methods against the existing nearest neighbor methods as well as other well-known text classification algorithms. Inspired by the language modeling approach to information retrieval, we show improvements in k-nearest neighbor (kNN) classification by replacing the classical cosine similarity with a KL dive...
متن کاملDetection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms
acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...
متن کاملImproved Nearest Neighbor Methods For Text Classification With Language Modeling and Harmonic Functions
We present new nearest neighbor methods for text classification and an evaluation of these methods against the existing nearest neighbor methods as well as other well-known text classification algorithms. Inspired by the language modeling approach to information retrieval, we show improvements in k-nearest neighbor (kNN) classification by replacing the classical cosine similarity with a KL dive...
متن کامل